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23. Cutting planes and branch & bound

� Algorithms for solving MIPs

� Cutting plane methods

� Branch and bound methods
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MIP algorithms

We can’t expect any algorithm for solving MIPs to be ef-
ficient in the worst case. Remember that we are solving
NP-complete problems!

We will see two classes of algorithms:

1. Cutting plane methods. These can also be used to solve
convex problems with integer constraints.

2. Branch and bound methods. These can also be used to
solve nonliear problems with integer constraints (MINLP).

These are the most popular methods for solving MIP and
combinatorial problems. Every modern solver uses variants
of the above methods.
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Review of MIPs
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Review of MIPs
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x1 + x2

s.t. − 5x1 + 4x2 ≤ 0

6x1 + 2x2 ≤ 17

x1, x2 ≥ 0 integer

Optimal solution = 4.5

� Remove integer constraint to obtain the LP relaxation.

� Optimal solution is an upper bound on the optimal cost.

� If solution is integral, it is optimal for the original problem.
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Cutting plane method

Basic idea:

1. Solve LP relaxation.

2. If LP solution is integral, it is optimal for the original
problem. We’re done!

3. If LP solution is not integral, find a linear constraint that
excludes the LP solution but does not exclude any integer
points (always possible). This is called a cut.

4. Add the cut constraint to the problem. Return to step 1.
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Cutting plane methods
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� A cut must simultaneously exclude the LP solution while
keeping all the feasible integer points.

� There always exists at least one valid cut.
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Cutting plane method

0 1 2 3
0

1

2

3

x1

x2

max
x

x1 + x2

s.t. − 5x1 + 4x2 ≤ 0

6x1 + 2x2 ≤ 17

x2 ≤ 2

x1, x2 ≥ 0 integer

� The constraint x2 ≤ 2 is a valid cut because it excludes the
optimal LP solution but doesn’t exclude any integer points.

� Now solve the LP relaxation for this new problem...
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Cutting plane method
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Optimal solution = 4.1667

� Adding a cut reduces our upper bound because we are
shrinking the feasible set (we added another constraint).

� Solution is still not an integer. Add another cut!
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Cutting plane method
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� LP solution is integral, so it must also be optimal for the
original integer problem.
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Cutting plane method
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� If we add all the possible linear

constraints that don’t exclude
feasible integral points, we obtain
the convex hull of the feasible
integral points.

� If we use the convex hull, then the
LP relaxation always gives us the
true optimal solution.

� The convex hull is generally very difficult to compute when
we have a large number of decision variables.

� By using a cutting plane method, we can (hopefully) find
the optimal point without computing the entire convex hull.
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Gomory cut

� One famous method for creating valid cuts is called the
Gomory cut, discovered by American mathematician
Ralph Gomory (1950).

� Nice features of the Gomory cut:

I Cuts are easy to compute; they can be computed as a
byproduct of the simplex algorithm for solving LPs
(this is why many LP solvers can also solve MIPs).

I Cutting plane method using Gomory cuts is guaranteed to
find the optimal solution using finitely many cuts.

� Of course, that finite number may be very very large...

� Gomory cuts or variants widely used in commercial solvers.
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Cutting planes in general
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� The cutting plane idea still works for more general convex
problems subject to integer constraints.

� Begin by solving the relaxation...
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Cutting planes in general
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x1, x2 ≥ 0 integer

Optimal solution = 9.5386

� This is a convex QCQP, and the optimal objective value is
an upper bound on the optimal integer objective value.

� Add a cuts, as before...
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Cutting planes in general
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x1 + x2

s.t. 2x21 + 4x22 − 3x1x2

− 3x1 − 15x2 + 19 ≤ 0

x1 ≤ 5, x2 ≤ 4

x1, x2 ≥ 0 integer

Optimal solution = 9

� Since the cuts never exclude feasible integer points, once
we obtain an integral solution to the relaxation we know we
found an optimal point to the original problem.

23-14



Cutting planes recap

� Sequentially add linear constraints (cuts) and solve the
relaxed version of the integer program.

� Cuts exclude the (non-integer) solution of the relaxed
problem while preserving all the integral points in the
feasible region

� It is always possible to find a cut whenever the relaxed
problem is convex. This is because any two
non-intersecting convex sets can be separated by a
hyperplane, and this hyperplane can serve as a cut.

� The Gomory cut for MIPs is easy to compute and
guaranteed to find the optimal solution after a finite
number of cuts (though that number may be large).
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Branch and bound methods

� Basic idea: it’s a tree-based search heuristic to help us
search the very large space of possible variable values.

� By keeping track of upper and lower bounds on the optimal
solution, we can prune branches of the tree so we don’t
have to search every possibility (if we’re lucky).

� We need two basic facts (assume a maximization MIP)

I Removing a constraint makes the feasible set larger, so the
new solution will be an upper bound to the optimal solution.

I Adding a constraint makes the feasible set smaller, so the
new solution will be an lower bound to the optimal solution.
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Branch and bound methods

1. Lower bounds: keep track of the best current lower
bound. This is a feasible (integer) point, so it provides a
lower bound to the optimal cost. Update this lower bound
if we come across a better one.

2. Upper bounds: solve several relaxed problems (subject to
varying assumptions). These are easy to solve and since
they involve relaxing constraints, they provide upper bounds
on the optimal solution subject to those assumptions.

3. Pruning: if an upper bound turns out to be worse than our
best lower bound, then the assumptions made in that case
were incorrect and we can discard them.
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Branch and bound example

Example borrowed from MIT 15.053/8

1
max 15x1 + 12x2 + 4x3 + 2x4

s.t. 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

xi ∈ {0, 1}

Best lower bound (feasible):
z? = 0, x? =

[
0 0 0 0

]
Solve the LP relaxation of (1):

z
(1)
LP = 21.38, x

(1)
LP =

[
0.63 1 0 0

]
LP solution is superior to z?, but not

integral. Branch on the fractional

variable x1. Mark descendants active.
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Branch and bound example

Example borrowed from MIT 15.053/8

1

2 3

x1 = 0 x1 = 1

max 15x1 + 12x2 + 4x3 + 2x4

s.t. 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

xi ∈ {0, 1}

Best lower bound (feasible):
z? = 0, x? =

[
0 0 0 0

]
Solve the LP relaxation of (2):

z
(2)
LP = 18, x

(2)
LP =

[
0 1 1 1

]
It’s integral and superior to z?, so it
becomes our new lower bound. No need
to branch any further. Prune the node
and move on to the next active node.
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Branch and bound example

Example borrowed from MIT 15.053/8

1

2 3

x1 = 0 x1 = 1

max 15x1 + 12x2 + 4x3 + 2x4

s.t. 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

xi ∈ {0, 1}

Best lower bound (feasible):
z? = 18, x? =

[
0 1 1 1

]
Solve the LP relaxation of (3):

z
(3)
LP = 19.8, x

(3)
LP =

[
1 0.4 0 0

]
LP solution is superior to z?, but not
integral. Branch on the fractional
variable x2. Mark descendants as active.
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Branch and bound example

Example borrowed from MIT 15.053/8

1

2 3

4 5

x1 = 0 x1 = 1

x2 = 0 x2 = 1

max 15x1 + 12x2 + 4x3 + 2x4

s.t. 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

xi ∈ {0, 1}

Best lower bound (feasible):
z? = 18, x? =

[
0 1 1 1

]
Solve the LP relaxation of (4):

z
(4)
LP = 17.67, x

(4)
LP =

[
1 0 0.67 0

]
LP solution is inferior to z?. No need to
branch any further. Prune the node and
move on to the next active node.
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Branch and bound example

Example borrowed from MIT 15.053/8

1

2 3

4 5

x1 = 0 x1 = 1

x2 = 0 x2 = 1

max 15x1 + 12x2 + 4x3 + 2x4

s.t. 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

xi ∈ {0, 1}

Best lower bound (feasible):
z? = 18, x? =

[
0 1 1 1

]
Solve the LP relaxation of (5):

z
(5)
LP = −∞, x

(5)
LP = infeasible

LP is infeasible (inferior to z?). No need
to branch any further. Prune the node.
No more active nodes; we are done!
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Branch and bound example

Example borrowed from MIT 15.053/8

1

2 3

4 5

x1 = 0 x1 = 1

x2 = 0 x2 = 1

max 15x1 + 12x2 + 4x3 + 2x4

s.t. 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

xi ∈ {0, 1}

Optimal solution:
z? = 18, x? =

[
0 1 1 1

]
Because we kept track of our bounds,
we didn’t need to search the entire
space to find the optimal solution.
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Generic branch and bound
Let (z?, x?) be a feasible point of the primal problem.

1. Let the primal problem be node (1) and mark it as active.

2. While there are active nodes remaining, select an active node (i)
and mark it as inactive.

3. Solve the relaxation of node (i). Call it (z
(i)
LP, x

(i)
LP).

I if z? ≥ z
(i)
LP, prune node (i).

I if z? < z
(i)
LP and x

(i)
LP is integral, then prune node (i)

and replace (z?, x?) with (z
(i)
LP, x

(i)
LP).

I if z? < z
(i)
LP and x

(i)
LP is not integral, then branch on a

non-integral variable. Mark the descendants as active.

4. Return to step 2.
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Flavors of branch and bound

� Integer variables:

I If 1 ≤ x ≤ 10, we can branch: 1 ≤ x ≤ 5 and 6 ≤ x ≤ 10.

I Can also branch into more than two branches.

� Branching preference:

I If there are many fractional variables in the LP solution,
which one should we branch on? e.g. can pick the one with
fractional part closest to 0.5.

I Some solvers allow you to pick variable order for branching.

I Can also branch on constraints.

� Alternate bounding methods:

I Aside from LP relaxation, we can also simply remove a
constraint, or use any other upper-bounding method.
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Branch and cut

Branch and cut is a type of branch and bound method that
uses cutting planes in addition to LP relaxation.

� In the bounding step, use cutting planes to improve the
bounds found via the LP relaxation.

I Can use just one cutting plane or many.

I Cutting planes can be designed to provide local bounds
(only valid for current branch) or global bounds.

� In the branching step, use the same branch and bound
heuristic as before.

Any of these methods can work — there are many possible
choices! Customized branch and bound algorithms can be
designed and tailored for solving specific types of MIPs.
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Even more generality

� Branch and bound is very general. All it requires is:

I A branching procedure that partitions the feasible set into
two or more sets (split the problem into smaller problems).

I A bounding procedure that provides an upper bound for the
objective value (must be relatively efficient).

� Versions of branch and bound can be used to find global
optima for pretty much any optimization problem. This
includes NLPs and MINLPs.
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